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Abstract. The hybrid boundary element method, a variational formulation introduced in 1987
by the first author, has proven to be a powerful tool for dealing with a great variety of
problems of potential, elastostatics and elastodynamics. One of the most recent endeavors of
the research team at PUC-Rio is the application of the method to problems of the linear
elastic fracture mechanics. In the M.Sc. dissertation of the second author, several possible
formulations were introduced and discussed. Aim of the present paper is the outline of the
main conceptual results of this dissertation, which are to be further elaborated in the frame of
a Ph.D. work. The mechanical consistency of the hybrid boundary element method enables
the adequate mathematical description of the stress field related to a cracked continuum. The
effects of opening and sliding of the crack surfaces are considered by means of a
hypersingular stress function, which is dealt with adequately in the frame of the variational
formulation. Moreover, it is shown that the stress series proposed by Williams for the local
field around a crack tip may be considered as a Green’s function. As a consequence, the
stress intensity factors corresponding to both modes I and II are directly obtained as primary
unknowns of the problem. Some numerical examples are presented in order to validate the
formulations proposed.
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1. A BRIEF OUTLINE OF THE HYBRID BOUNDARY ELEMENT METHOD

The hybrid boundary element method is based on the Hellinger-Reissner potential. It has
been developed by Dumont (1987), who generalized Pian’s ideas for finite elements by
considering the stress field in the domain as a series of fundamental, singular solutions, thus
arriving at a boundary integral formulation for an elastic body of arbitrary shape.

Stresses in the domain. One is looking for an adequate approximation of the stress field
that satisfies equilibrium in the domain, for applied body forces bi:



0, =+ ijij bσ   in  Ω (1)

In this and in the following equations, the indices i, j may assume values 1, 2 or 3, as they
refer to the coordinate directions x, y or z, respectively, for a general three-dimensional
analysis. Later on, one shall particularize the application to two-dimensional problems. Sum
is indicated by repeated indices.

A convenient approximate solution of the partial differential equation (1) may be
formulated in terms of a superposition of two types of fields:

b
ijijij σσσ += ∗ (2)

in which b
ijσ  is an arbitrary particular solution of eq. (1):

0=+ i
b
ij bσ (3)

and ∗
ijσ  is expressed as a sum of fundamental solutions

∗∗∗ = mijmij pσσ (4)

for singular force parameters ∗
mp  applied along the boundary Γ, but just outside the domain.

The subscript m indicates a given degree of freedom, characterizing not only a point along Γ
but also a coordinate direction. Since ∗

ijσ  corresponds to a fundamental solution, the

homogeneous solution of eq. (1) is identically satisfied. In fact,
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except in a vicinity 0Ω  of the point of application of the singular force ∗
mp , where
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From the stresses in eq. (4) one derives the traction forces along the boundary Γ  as
∗∗∗ = mimi ppt (7)

Displacements along the boundary. Along the boundary, the displacements are
piecewise approximated by polynomials

nini duu = (8)

in such a way that boundary conditions along Γu are identically satisfied:

ii uu =   in  Γu (9)

in which iu  are prescribed displacements.

For prescribed body forces ib  in Ω, displacements iu  in Γu and traction forces it  along

Γσ, the problem may be completely described once the singular force parameters ∗
mp , for

stresses in the domain, and the nodal displacement parameters dn, for displacements along Γ,
have been determined.

The variational statement. The problem, as proposed above, may be formulated in
terms of the variational statement that the Hellinger-Reissner potential
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is stationary. Given the description of stresses, forces and displacements proposed, one may
rewrite the stationariness statement in matrix notation:

[ ] [ ] 0TbTbT* =−−+−+=Π− ∗∗ pHtpdHdbFpp δδδ R (11)

in which the flexibility matrix mnF≡F , the cinematic transformation matrix mnH≡H  and the

vector of equivalent nodal displacements b
mb≡bb  are defined, in a compact notation, as

[ ] { } { }∫∫ Ω
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Similarly, the vector of equivalent nodal forces b
mt≡

bt  and the vector mp≡p , which is in

part a set of nodal forces equivalent to known surface forces it  along part σΓ  of the

boundary, and in part a set of unknowns corresponding to reaction forces along the
complementary boundary segment uΓ , are expressed as

∫Γ Γ= duimj
b
ijησbt   and  ∫Γ Γ=

σ

dtu iimp (13)

For arbitrary variations ∗pδ  and dδ , two sets of equations originate from the variational
principle:
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For a finite domain, the matrix H is singular by construction, since the forces are void for any
set of rigid body displacements. Then, defining an orthogonal basis W of rigid body nodal
displacements, one must have from the first of eqs. (14):

0HW = (15)

As a consequence, there also exists an orthogonal basis V such that

0VH =T (16)

Moreover, it may be verified that, since in the second of eqs. (14) the equivalent nodal forces
must be in equilibrium,

( ) 0tpW =− bT (17)

Then, one must have, for physical consistency,

0pV =∗T (18)

from which follows, in the first of eqs. (14), that necessarily

0FV = (19)

This equation is the key for the evaluation of the elements about the main diagonal of the
matrix F, which cannot be directly obtained by integration.

Considering the spectral properties given by eqs. (18) and (19), one may solve the first of
eqs. (14) for ∗p , in terms of generalized inverses (Ben-Israel and Greville, 1980) and
introduce its expression into the second of eqs. (14), thus arriving at the relation
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in which

( ) KHVVFH =+
−1TT (21)

is a symmetric, positive semi-definite stiffness matrix. Owing to the spectral property of H
given by eq. (15), this stiffness matrix is by construction orthogonal to rigid body
displacements.

For the sake of brevity, one has to content oneself with this short description of the hybrid
boundary element method. Interested readers are referred to some of the articles written by the
first author in the last decade.

2. SOME FACTS FROM THE LINEAR ELASTIC FRACTURE MECHANICS

Aim of this outline is to introduce some definitions and aspects of the linear elastic
fracture mechanics, which are relevant for the subject of this paper. Readers interested in
being initiated into the theory of fracture mechanics are referred to Anderson (1995), for
instance, who also outlines the development of this new discipline since the pioneering work
done by Inglis (1913).

A crack in some region of an elastic body brings along a discontinuity of the stress field
with abrupt increase of the stresses around the crack tip. It is the structural analyst’s task to
investigate whether the cracked elastic body is still able to bear the applied loading. For this
sake, Griffith (1920) proposed a criterion based on a “global energy balance: for fracture to
occur, the energy stored in the structure must be sufficient to overcome the surface energy of
the material” (Anderson, 1995). This proposition was later expressed more conveniently by
Irwin (1948) in terms of an energy release rate, *, for linear elastic materials. Finally, Rice
(1968) extended the concept for nonlinear materials, in terms of the J contour integral:

A
J

d

dΠ= (22)

where Π is the potential energy and $ is the crack area. As Rice (1968) demonstrated, the J
integral is contour independent. This integral is a fracture characterizing parameter for
nonlinear materials. In case of linear materials, since J coincides with *, it may be brought in
connection to the stress intensity factors of a crack.

For cracked configurations subjected to external forces, several authors derived closed-
form expressions for the stresses in the body. In terms of a polar coordinate system with the
origin at the crack tip, it can be shown that the stress field in any linear elastic cracked body is
given by
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in which KI, KII and KIII are defined as the stress intensity factors corresponding to the modes
of loading I (crack opening), II (in-plane shear of the crack) and III (out-of-plane shear),
respectively. For plane stress problems, expression above is known as William’s series
expansion. It is applicable to different local crack configurations (Williams, 1957).

Evaluating either integral J around a crack tip or the corresponding stress intensity
factors is a means of assessing the stability of a cracked body. Then, one must demonstrate
the adequacy of the hybrid boundary element method for the determination of either type of
quantities. A third type of measuring the fracture toughness is the crack tip opening



displacement, as proposed by Wells (1954). This is a preferred procedure in many boundary
element implementations, since this type of analysis is computationally less expensive than
the evaluation of the integral J. However, the crack tip opening displacement shall not be
considered in this paper.

3. LINEAR ELASTIC FRACTURE ANALYSIS USING SUB-REGIONS

By means of a first numerical example, one is aiming to demonstrate the capability of
the hybrid boundary element method in representing the stress field around a crack tip. For
this sake, consider the analysis of a plate with a center crack and stretched uniaxially, as
illustrated in the inset b of Fig. 1. Figure 1a represents one quarter of the plate, discretized
with 42 linear boundary elements. The load is applied at the upper edge. Both left and lower
edges are fixed against normal displacement, with exception of the boundary corresponding to
the cracked surface, which, as well as the right edge, is completely free to displace. Since in
this idealization only one of the crack surfaces is discretized, no topological difficulty arises.
The stress field discontinuity around crack tip is due to the abrupt change of boundary
conditions. Then a local mesh refinement is required, as detailed in Fig. 1c.

Owing to the occurrence of mixed boundary conditions, the problem has to be analyzed
using both sets of equations (14), as given by eq. (20). After carrying out the analysis, half the
value of the integral J can be obtained numerically along the semi-contour indicated in Fig.
1d, which is a half square with edges equal to 2*10-5 units. Since the region corresponds to
high stress gradients, a highly accurate numerical evaluation is required. In the example, 15
Gaussian points were used for each one of the contour segments indicated in the figure. The
numerical result obtained was J = 0.01215, corresponding to a mode I stress intensity factor
KI = 1.77684. For comparison, the analytical value given by Anderson (1995) is KI = 1.77713
(a 0.016% error).

In the hybrid boundary element method, the evaluation of the integral J is by far less
computationally expensive than in the conventional formulation, since the internal results
along the contour are given directly by means of eqs. (2) and (4) in terms of p∗ .
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Figure 1 – a) Boundary element discretization of one quarter of a rectangular plate with a
center crack loaded uniaxially (inset b); c) detail of mesh refinement along the
crack face; d) half square contour around crack tip (node 11).



4. LINEAR ELASTIC FRACTURE ANALYSIS USING HYPERSINGULAR
FUNCTIONS

Before any further consideration, it is important to point out that, in case of Neumann-
type boundary conditions, the hybrid boundary element method offers a simplification that
cannot be matched by any other numerical discretization method, namely the fact that only the
second of eqs. (14) is needed in the analysis, since the vector (p – tb) of equivalent nodal
loads is completely known and only the vector ∗p  of singular forces is required for the
representation of the stress state in the interior of the elastic body.

In spite of the stimulating results obtained using sub-regions, as outlined in the previous
section, the authors wanted to investigate the possibility of discretizing a whole structure,
which requires overcoming the topological difficulty of representing in a single model both
faces of a crack.

This challenge has already been dealt with successfully in the frame of the conventional
boundary element method. As a consequence, there should be no fundamental obstacle in
implementing a well tested procedure. In the conventional boundary element method,
hypersingular fundamental solutions are related to nodes along the crack surface, whereas the
usual Kelvin’s fundamental solution is applied to the crack tip. This recipe also should work
with the hybrid boundary element method.

The stress field around contiguous faces of a crack suffers a discontinuity given by the
tendency of relative opening and sliding of the surfaces (the possibility of friction shall be
completely ignored herewith). Then, a hypersingular fundamental solution should be
appropriate for the representation of such discontinuity. However, differently from what some
researchers have already proposed in the frame of the conventional boundary element method,
the authors preferred to simulate the stress discontinuity along the crack surface in terms of
direct differences of singular forces. [see Guimarães and Telles (1994), for instance; a
literature review would be too long] Figures 2a and 2b represent a point of the crack surface,
for a two-dimensional analysis, to which two couples of singular forces are applied, as an
attempt of simulating the neighboring stress field.

Figure 2 – Hypersingular fundamental solutions given as differences of Kelvin’s fundamental
solutions for the representation of sliding and opening at a point of the crack face.
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For numerical implementation, these expressions must be rewritten in global Cartesian
coordinates system (Lopes, 1998).

This approach in terms of hypersingular fundamental solutions does not differ
essentially from previous accomplishments in the conventional boundary element method.
However, there is a remarkable difference in terms of describing stresses and displacements
around the crack tip. In the conventional boundary element method, a boundary integral
statement – Somigliana’s identity – gives displacements in the interior of the domain by using
a fundamental solution that plays the role of a weighting function. Then, it is possible to
consider Kelvin’s fundamental solution applied directly at the crack tip, combined with the
hypersingular solution along the crack face.

In the hybrid boundary element method, on the other hand, Kelvin’s fundamental
solution is itself the actual result one is looking for, in terms of the singular load parameters
∗p . Then, if one considers that the fundamental solution is applied at the crack tip, one is

tacitly assuming that the stress singularity increases with 1/r and not with r1 , as obtained
in the theory of fracture mechanics, according to eq. (23). Such an implementation, as tested
by Lopes (1998), yields the obvious result of a zero load parameter ∗

mp  for the crack tip.

In the sequence of investigation, the authors reasoned that maybe the hypersingular
functions alone, applied along the crack face and with no singular loading at the crack tip, are
sufficient to describe the stress field around a crack. The same plate of Fig. 1 was investigated
again, as a whole structure, with Kelvin’s fundamental solution applied at points along the
boundary and the hypersingular fundamental solution applied at points along the crack face.
Twenty evenly spaced linear elements were considered along the boundary. The same number
of elements was used along the crack face. Since plain Neumann boundary condition is
involved in this problem, only the second of eqs. (14) is required in the analysis. The
numerical evaluation of the matrix H is straightforward, for the complementary terms
involving the hypersingular fundamental solution, if one considers that conceptually only the
finite part of the eventual singular integrals is required. Guimarães and Telles (1994) elucidate
this fact mathematically. However, differently from the example of Fig. 1, now one is not able
to obtain the stress intensity factor through the integral J, since this integral is simply void.
This assertion becomes immediately obvious when one considers that no fundamental
solution is applied at the crack tip and therefore no actual discontinuity has been provoked.

On the other hand, one may demonstrate numerically that, at least for this type of
discretization, the stress field around the crack, although continuous, presents the same
tendency of the actual stress field. Figure 3 displays the results of yyσ  along the middle

section of the plate, for three different sizes of the central crack. For comparison, the
theoretical stress field of eq. (23), as proposed by Williams (1953), is evaluated by adjusting
the coefficients Kk and Amk (for mode I alone) using least squares. The excellent agreement of
results may be verified visually. The values of KI, as obtained by this asymptotic approach,
are given in Table 1.

Table 1 – Mode I stress intensity factors for the plate of Fig. 3

Relation
a/W

Coordinate of
crack tip

Interval used for least
squares

KI

Numerical
KI

analytical
1/15 (16, 15) (16.135, 15) – 22.135, 15) 1.77924 1.77713
1/10 (11, 10) (11.135, 10) – (17.135, 10) 1.78874 1.78303
1/5 (6, 5) (6.136, 5) – (8.735, 5) 1.80216 1.81584
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Figure 3 – Stress gradients along the symmetry line of a rectangular plate with a center crack
for three different crack/width ratios. Dashed curves are Williams’ series with
coefficients evaluated in order that the numerical result fits best. The stress
intensity factor KI is one of these coefficients.

5. LINEAR ELASTIC FRACTURE ANALYSIS USING WILLIAM’S SERIES AS A
GREEN’S FUNCTION

Consider a plate (of arbitrary shape) with an edge crack, as illustrated in Fig. 4a,
submitted to a self-equilibrated, but otherwise arbitrary loading throughout the boundary.
Body forces are absent, although they also might be acting. The crack face may be either
loaded or unloaded. For this particular case of one edge crack, the stress field in the plate may
be expressed by (Lopes, 1998)

w
l

w
ijlmijmij pp σσσ += ∗∗ (25)

in which one considers a stress field ∗∗
mijm pσ  given as a superposition of Kelvin’s fundamental

solutions, for singular forces ∗
mp  applied along the boundary as if there was no crack,

superposed with a stress field w
l

w
ijl pσ  given by William’s series expansion. This stress field

corresponds exactly to eq. (23), for plane stress problems, with as many terms as desired for
accuracy, including the singular term. It is a Green’s function for the single edge crack.
Compare eq. (25) with eqs. (2) and (4).

Moreover, the displacement field along the boundary is assumed as
w
l

w
ilmimi puduu += (26)

which is a more general expression than eq. (8). Then, the matrix equilibrium equation given
in eq. (14) is rewritten as
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Note that, in eq. (28), HH ≡∗∗ , according to eq. (12). Moreover, the vector of equivalent
nodal forces p had already been defined in eq. (13). The evaluation of the remaining integrals
in eqs. (28) and (29) is straightforward, since William’s series involves no new singularities.

In a last numerical example, equation (27) is applied to the solution of the edge crack
problem illustrated in Fig. 4a. Two boundary discretizations are implemented, as shown in
Figs. 4b and 4c. Subscripts m and n in the equations above refer to the nodal degrees of
freedom along the boundary. Subscripts l and k refer to odd terms of William’s series, in such
a way that only fractional exponents of the radius r are considered, as given in eq. (23), since
the polynomial part of this series is already represented by Kelvin’s fundamental solution
applied along the boundary. Note that the crack face has not been discretized.

Calculated values of stress intensity factors are given in Table 2. The results are
adequate, given the coarse mesh discretization. Note that this mathematical model does not
simulate exactly freeloaded edges, since stresses due to Kelvin’s fundamental solution are
acting in the crack faces. However, the stress field around the crack tip is adequately
simulated by William’s series, which compensates the model’s fault. This simple model fails
completely in simulating multiple cracks, since William’s series is valid for just one crack tip.
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Figure 4 – Rectangular plate with an edge crack. Two boundary element discretizations are
shown. Crack behavior is simulated by William’s series referred to the crack tip.

Table 2 – Stress intensity factors for the edge crack of Fig. 4

Crack length
Discretization
type of Fig. 4

Number of odd
terms in

William’s series
KI numerical KI analytical

0.1 b 5 0.250 0.267
0.1 c 5 0.258 0.267
0.1 c 8 0.260 0.267
0.2 b 5 0.426 0.432
0.2 b 8 0.428 0.432
0.3 b 5 0.637 0.641



6. CONCLUSIONS

Aim of this article was to investigate the possibility of modeling the cracked configuration of
an elastic body in the frame of the hybrid boundary element method. The adequacy of a series
of Kelvin’s fundamental solutions to simulate the stress field around a crack tip was
demonstrated in section 3 by considering a structure divided into sub-regions. In section 4, it
was shown that hypersingular functions describe adequately the relative displacements of the
crack faces. Finally, it was demonstrated how a Green’s function – William’s series – may be
introduced in the formulation in order to improve the numerical model. At present, the authors
are working on the combination of hypersingular functions and Green’s functions to properly
simulate the cracked behavior of an elastic body. In principle, the model should work for
multiple and curved cracks. The main advantage of the proposed approach is that the stress
intensity factors, as coefficients of a Green’s function, are primary unknowns, whose
evaluation does not require any post-processing.
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